DIPFEJK DETEKTORI PALI NA TESTU: Istraživači pozivaju na hitna poboljšanja
NIJEDAN od 16 vodećih detektora ne može pouzdano da identifikuje lažne fotografije u stvarnom svetu, otkrili su australijski i južnokorejski istraživači.

Foto Shutterstock
Nedavno objavljeni rad na portalu arXiv, koji su zajednički izradili australijska nacionalna naučna agencija CSIRO i južnokorejski Univerzitet Sungkjunkvan, otkrio je ozbiljne ranjivosti u postojećim dipfejk (deepfake) detektorima.
Istraživanje je procenilo 16 vodećih detektora i pokazalo da nijedan od njih nije u stanju da pouzdano identifikuje deepfake u stvarnim uslovima.
Metodologija istraživanja
Istraživači su razvili okvir u pet koraka za procenu alata koji uključuje tip dipfejka, metodu detekcije, pripremu podataka, obuku modela i validaciju.
Pritom su identifikovali i 18 faktora koji utiču na tačnost detektora koji su testirani u različitim scenarijima, uključujući crnu, belu i sivu kutiju.
Postojeći detektori pokazuju ozbiljne slabosti, posebno kada se suočavaju s radovima koji se ne nalaze u njihovim treniranim podacima, zapažaju istraživači.
Na primer ICT (Identity Consistent Transformer), detektor treniran na licima poznatih osoba, nije bio efikasan u detekciji dipfejka s nepoznatim osobama.
Detektori su pali na ispitu, nebitno da li je u pitanju "synthesis deepfake" koji generiše potpuno nova sintetička lica, "faceswap deepfake" radovima u kojima se lice jedne osobe zamenjuje drugim ili " reeanactment deepfake" u kojem se zadržavaju crte lica neke osobe, ali se menjaju njeni izrazi.
Integracija podataka
Istraživači pozivaju na hitna poboljšanja, predlažu razvoj više detektora i korišćenje različitih izvora podataka kako bi se poboljšala tačnost detekcije.
Naglašavaju i potrebu integracije audio, tekstualnih i meta podataka u modele za detekciju, kao i primenu strategija poput fingerprintinga, odnosno ugradnje veštačkih i GAN otisaka u slike i video snimke kako bi se bolje pratilo poreklo dipfejka.
Prva metoda uključuje ugradnju jedinstvenih oznaka u trening podatke generativnih modela koji se prepoznaju u generisanim dipfejk radovima, a druga na prirodne oznake koje generativni modeli ostavljaju u generisanim sadržajima.
(b92)

DOGOVORENO PRIMIRJE IRANA I IZRAELA: Tramp - Kraj rata; Bombe SAD nisu uništile nuklearna postrojenja? (FOTO/VIDEO)
RAT Izraela i Irana - 11. dan.
23. 06. 2025. u 08:17 >> 00:53

HAMNEI PREVARIO TRAMPA: Amerika gađala prazno nuklearno postrojenje?
VISOKI iranski izvori rekli su Reutersu da je većina visoko obogaćenog uranijuma na lokaciji Fordo uklonjena pre američkog napada.
22. 06. 2025. u 10:37

SLIKA IZ SRBIJE KOJA SLAMA SRCE: Tragičan razlog zašto roda 2 dana ne napušta zgarište - izgorelo 2 hektara žita
SVAKE godine, uprkos molbama i apelima, veliki broj ljudi pali strljiku i na taj način dolazi do požara u kojima stradaju tuđi usevi, ali nažalost i životi nevinih bića.
27. 06. 2025. u 16:50
Komentari (0)